边缘密度函数是指在二维随机变量中,其中一个变量的概率分布。在这种情况下,我们想要找到关于 x 的边际密度函数,也就是当 y 固定时,x 的概率分布。给定 f(x,y) = 10,我们可以使用积分来计算边际密度函数。首先,考虑 x 的范围。由于没有给出具体的范围,我们假设 x 和 y 都在实数集上取值。
∴X的边际分布函数FX(x)=∫(0,x)fX(x)dx=1-e^(-2x),x0;FX(x)=0,x其它。同理,Y的边际密度函数fY(y)=∫(-∞,∞)f(x,y)dx=∫(-∞,∞)2e^(-2x-y)dx。∴fX(x)=[e^(-y)]∫(0,∞)2e^(-2x)dx=e^(-y),y0;fY(y)=0,x其它。
具体来说,我们可以通过以下步骤来求解:根据问题的具体情况,确定两个随机变量X和Y的联合概率密度函数f(x,y)。将联合概率密度函数f(x,y)分别对y和x进行积分,得到两个边缘密度函数fX(x)和fY(y)。如果需要,可以将得到的两个边缘密度函数进行归一化处理,使得它们的积分等于1。
根据变量的范围,对联合概率密度函数进行积分,得到Y积分的边际概率密度,得到X积分的边际概率密度。X的边缘分布的密度函数fX(x)=∫(-∞,∞)f(x,y)dy=∫(0,x)3xdy=3x,0xfX(x)=0,x其它。
边际密度函数的求解,本质就是考察积分,只要记住边缘概率密度就是对联合密度函数求积分,当求关于Y的边际密度函数时就是对于f(x,y)的联合密度函数关于X求积分,求Y的边际密度函数则同理。
一样。边缘分布函数即边缘分布亦称边沿分布或边际分布,同时也成为边际密度函数,是翻译不同的问题,但实际二者是同一个概念,是统计学中的相关知识,指随机向量中分量各自的概率分布。边缘一词来源于离散型情形。
边缘密度函数是指在二维随机变量中,其中一个变量的概率分布。在这种情况下,我们想要找到关于 x 的边际密度函数,也就是当 y 固定时,x 的概率分布。给定 f(x,y) = 10,我们可以使用积分来计算边际密度函数。首先,考虑 x 的范围。由于没有给出具体的范围,我们假设 x 和 y 都在实数集上取值。
解:(1)依据定义,X的边缘密度fX(x)=∫(-∞,∞)f(x,y)dy=∫(0,1)(2-x-y)dy=3/2-x。同理,X的边缘密度fY(y)=∫(-∞,∞)f(x,y)dx=∫(0,1)(2-x-y)dx=3/2-y。显然,fX(x)*fY(y)≠f(x,y),∴X、Y不相互独立。
利用概率密度的性质计算。经济数学团队帮你解请及时评价。
边缘概率密度为:f(y)=∫(-∞到∞)f(x,y)dx =∫(y到1)8y(2-x)dx =4xy(4-x)|(y到1)=4y(3-4y+y)如果二维随机变量X,Y的分布函数F{x,y}为已知,那么随机变量x,y的分布函数FX{x}和F{y}可由F{x,y}求得。
如果二维随机变量X,Y的分布函数F{x,y}为已知,那么随机变量x,y的分布函数FX{x}和F{y}可由F{x,y}求得。
f(X,Y)关于X的边缘概率密度fX(x)=f(x,y)对y积分,下限x,上限无穷,结果fX(x)=e^(-x)f(X,Y)关于Y的边缘概率密度fY(y)=f(x,y)对x积分,下限0,上限y,结果fY(y)=ye^(-y)f(x,y)=e^(-y)不等于fX(x)*fY(y),故X和Y不独立 4。
可利用联合概率密度的二重积分为1,求出k=2。边际密度函数的求解,本质就是考察积分,只要记住边缘概率密度就是对联合密度函数求积分,当我们求关于Y的边际密度函数时就是对于f(x,y)的联合密度函数关于X求积分,求Y的边际密度函数则同理。